[ ]:
!pip install matgraphdb
!pip install ipykernel
01 - Introduction to MatGraphDB¶
This notebook demonstrates the basic usage of MatGraphDB, a graph database designed for materials science data. MatGraphDB allows you to:
Store and query materials data
Create relationships between different types of materials data
Generate and manage derived data through generators
Let’s go through some basic examples.
[1]:
import os
import shutil
import pandas as pd
1. Creating a MatGraphDB Instance¶
The main class in MatGraphDB is the MatGraphDB
class, which can be directly imported from the matgraphdb
package. This class is used to create a new MatGraphDB instance. We’ll store our data in a temporary directory.
[2]:
from matgraphdb import MatGraphDB
# Create a temporary directory for our database
storage_path = "MatGraphDB"
if os.path.exists(storage_path):
shutil.rmtree(storage_path)
os.makedirs(storage_path, exist_ok=True)
# Initialize MatGraphDB
mgdb = MatGraphDB(storage_path=storage_path)
Let’s take a look at the database summary
[3]:
print(mgdb.summary())
============================================================
GRAPH DATABASE SUMMARY
============================================================
Name: MatGraphDB
Storage path: MatGraphDB
└── Repository structure:
├── nodes/ (MatGraphDB\nodes)
├── edges/ (MatGraphDB\edges)
├── edge_generators/ (MatGraphDB\edge_generators)
├── node_generators/ (MatGraphDB\node_generators)
└── graph/ (MatGraphDB\graph)
############################################################
NODE DETAILS
############################################################
Total node types: 1
------------------------------------------------------------
• Node type: materials
- Number of nodes: 0
- Number of features: 1
- db_path: MatGraphDB\nodes\materials
------------------------------------------------------------
############################################################
EDGE DETAILS
############################################################
Total edge types: 0
------------------------------------------------------------
############################################################
NODE GENERATOR DETAILS
############################################################
Total node generators: 0
------------------------------------------------------------
############################################################
EDGE GENERATOR DETAILS
############################################################
Total edge generators: 0
------------------------------------------------------------
You’ll notice that a “materials” node store has been automatically created. This is because the MatGraphDB
class automatically creates a node store for the “materials” node type.
2. Adding Materials¶
We can create new materials in our “materials” store by calling mgdb.create_material(...)
. This is a wrapper around the create_material
method of the MaterialNodes
class, which mean the arugments are the same.
Materials can be created in MatGraphDB
in two primary ways through the create_materials
method:
- Using a ``pymatgen`` ``Structure`` object:This is the most direct way when you already have a
Structure
object that defines the material’s atomic arrangement. - Providing atomic coordinates, species, and lattice manually:This is useful when you have the raw data and want to construct the material without a
Structure
object.
Additionally, you can include custom properties in the form of a nested dictionary to enrich the material data.
Example 1: Using a Structure
object¶
[4]:
from pymatgen.core Structure
# Define a pymatgen Structure object
structure = Structure(
lattice=[[0, 2.13, 2.13], [2.13, 0, 2.13], [2.13, 2.13, 0]],
species=["Mg", "O"],
coords=[[0, 0, 0], [0.5, 0.5, 0.5]],
)
material_data = {
"structure": structure,
"properties": {
"material_id": "mp-1",
"source": "example",
"thermal_conductivity": {"value": 2.5, "unit": "W/mK"},
},
}
# Add the material to the database.
mgdb.create_material(
structure=material_data["structure"], properties=material_data["properties"]
)
material_nodes = mgdb.read_nodes("materials")
print(material_nodes.to_pandas())
2025-01-10 17:17:41 - matgraphdb.materials.nodes.materials - INFO - Adding a new material.
2025-01-10 17:17:41 - matgraphdb.materials.nodes.materials - INFO - Material added successfully.
atomic_numbers cartesian_coords density \
0 [12, 8] [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843
density_atomic elements formula frac_coords id \
0 0.103481 [Mg, O] Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 0
lattice material_id ... \
0 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... mp-1 ...
structure.lattice.beta structure.lattice.c structure.lattice.gamma \
0 60.0 3.012275 60.0
structure.lattice.matrix structure.lattice.pbc \
0 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
structure.lattice.volume structure.sites \
0 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
thermal_conductivity.unit thermal_conductivity.value volume
0 W/mK 2.5 19.327194
[1 rows x 30 columns]
(1, 30)
Example 2: Using atomic coordinates, species, and lattice manually¶
[5]:
# Define atomic data
coords = [[0, 0, 0], [0.5, 0.5, 0.5]]
species = ["Mg", "O"]
lattice = [[0, 2.13, 2.13], [2.13, 0, 2.13], [2.13, 2.13, 0]]
# Add the material to the database
material_data = {
"coords": coords,
"species": species,
"lattice": lattice,
"properties": {
"material_id": "mp-2",
"source": "example_manual",
"band_gap": {"value": 1.2, "unit": "eV"},
},
}
result = mgdb.create_material(
coords=material_data["coords"],
species=material_data["species"],
lattice=material_data["lattice"],
properties=material_data["properties"],
)
material_nodes = mgdb.read_nodes("materials")
print(material_nodes.to_pandas())
print(material_nodes.shape)
2025-01-10 17:18:51 - matgraphdb.materials.core - INFO - Creating material.
2025-01-10 17:18:51 - matgraphdb.materials.nodes.materials - INFO - Adding a new material.
2025-01-10 17:18:51 - matgraphdb.materials.nodes.materials - INFO - Material added successfully.
atomic_numbers band_gap.unit band_gap.value \
0 [12, 8] None NaN
1 [12, 8] eV 1.2
cartesian_coords density density_atomic elements \
0 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
1 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
formula frac_coords id ... structure.lattice.beta \
0 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 0 ... 60.0
1 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 1 ... 60.0
structure.lattice.c structure.lattice.gamma \
0 3.012275 60.0
1 3.012275 60.0
structure.lattice.matrix structure.lattice.pbc \
0 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
1 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
structure.lattice.volume structure.sites \
0 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
1 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
thermal_conductivity.unit thermal_conductivity.value volume
0 W/mK 2.5 19.327194
1 None NaN 19.327194
[2 rows x 32 columns]
(2, 32)
NodeStores and EdgeStores¶
Any nodes or edges in MatGraphDB are stored in NodeStores and EdgeStores, respectively. These can be accessed through the node_stores
and edge_stores
attributes of the MatGraphDB
class. These stores extend the capabilities of the ParquetDB
class, allowing users to leverage all the features available in ParquetDB
.
What is ParquetDB?¶
ParquetDB
is a database framework built on top of Apache Parquet and PyArrow, optimized for handling large-scale data. Its core strength lies in its ability to efficiently store, query, and process vast amounts of data with minimal overhead. The foundation of ParquetDB
—Apache Parquet—offers several advantages:
Columnar Format: Parquet organizes data by columns instead of rows, making it particularly effective for analytical queries that only need specific columns. This format improves compression efficiency and reduces I/O overhead.
Schema Embedding: Each Parquet file includes an embedded schema, ensuring consistency and enabling seamless schema evolution.
Predicate Pushdown: Parquet’s structure allows queries to read only the necessary data blocks and relevant columns, significantly improving query performance by reducing data load times.
Efficient Encoding and Compression: Parquet supports column-level encoding and compression, enhancing both storage efficiency and read performance.
Metadata Support: Parquet files store metadata at both the table and field levels, which facilitates efficient querying and rich data descriptions.
Batch Processing: Data in Parquet files is organized into column groups, making it ideal for batch operations and high-throughput workflows.
Why Use ParquetDB?¶
By leveraging the advantages of Parquet files, ParquetDB
efficiently handles the serialization and deserialization of complex datasets. It provides scalable and fast access to data, seamlessly integrating into machine learning workflows and big data pipelines. This is especially beneficial for material science applications in MatGraphDB, where datasets often involve complex and interconnected relationships between nodes and edges.
Integration with MatGraphDB¶
When nodes are added to MatGraphDB, they are indexed, and the index is stored in the id
column. This ensures fast lookups and efficient data management. Whether you are storing materials, elements, or defining relationships between them, NodeStores and EdgeStores inherit all the features of ParquetDB
, making them robust, scalable, and performant.
For more details about ParquetDB
, including its architecture and capabilities, refer to the ParquetDB documentation.
Adding Multiple Materials at Once¶
If you have multiple materials, it is more efficient to add them in a bulk call. You can do this by using create_materials. Here’s an example:
[6]:
materials = [
{
"structure": structure,
"properties": {"material_id": "mp-3", "density": 3.95},
},
{
"coords": [[0, 0, 0], [0.5, 0.5, 0.5]],
"species": ["Si", "O"],
"lattice": [[0, 3.1, 3.1], [3.1, 0, 3.1], [3.1, 3.1, 0]],
"properties": {"material_id": "mp-4", "band_gap": 1.8},
},
]
mgdb.create_materials(materials)
material_nodes = mgdb.read_nodes("materials")
print(material_nodes.to_pandas())
print(material_nodes.shape)
2025-01-10 17:39:19 - matgraphdb.materials.core - INFO - Creating materials.
2025-01-10 17:39:19 - matgraphdb.materials.nodes.materials - INFO - Adding 2 materials to the database.
2025-01-10 17:39:19 - matgraphdb.utils.mp_utils - INFO - Passing the following arguments to the worker method
2025-01-10 17:39:21 - matgraphdb.materials.nodes.materials - ERROR - Error adding material: Unable to merge: Field atomic_numbers has incompatible types: list<element: int64> vs extension<arrow.fixed_shape_tensor[value_type=int64, shape=[2]]>
2025-01-10 17:39:21 - matgraphdb.materials.nodes.materials - INFO - All materials added successfully.
atomic_numbers band_gap.unit band_gap.value \
0 [12, 8] None NaN
1 [12, 8] eV 1.2
cartesian_coords density density_atomic elements \
0 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
1 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
formula frac_coords id ... structure.lattice.beta \
0 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 0 ... 60.0
1 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 1 ... 60.0
structure.lattice.c structure.lattice.gamma \
0 3.012275 60.0
1 3.012275 60.0
structure.lattice.matrix structure.lattice.pbc \
0 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
1 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
structure.lattice.volume structure.sites \
0 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
1 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
thermal_conductivity.unit thermal_conductivity.value volume
0 W/mK 2.5 19.327194
1 None NaN 19.327194
[2 rows x 32 columns]
(2, 32)
3. Reading Materials¶
In the previous section, we added materials to the database and performed a basic read operation, but lets go into more details for the read operations.
To start, we can read all materials in the database with the read_materials
method.
[7]:
# Read all materials
materials = mgdb.read_materials()
print("All materials:")
print(materials.to_pandas())
2025-01-11 14:09:04 - matgraphdb.materials.core - INFO - Reading materials.
All materials:
atomic_numbers band_gap.unit band_gap.value \
0 [12, 8] None NaN
1 [12, 8] eV 1.2
cartesian_coords density density_atomic elements \
0 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
1 [[0.0, 0.0, 0.0], [2.13, 2.13, 2.13]] 3.462843 0.103481 [Mg, O]
formula frac_coords id ... structure.lattice.beta \
0 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 0 ... 60.0
1 Mg1 O1 [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] 1 ... 60.0
structure.lattice.c structure.lattice.gamma \
0 3.012275 60.0
1 3.012275 60.0
structure.lattice.matrix structure.lattice.pbc \
0 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
1 [0.0, 2.13, 2.13, 2.13, 0.0, 2.13, 2.13, 2.13,... [True, True, True]
structure.lattice.volume structure.sites \
0 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
1 19.327194 [{'abc': [0.0, 0.0, 0.0], 'label': 'Mg', 'prop...
thermal_conductivity.unit thermal_conductivity.value volume
0 W/mK 2.5 19.327194
1 None NaN 19.327194
[2 rows x 32 columns]
Reading Specific Columns¶
We can also read specific columns from the materials node store. This will only read these columns into memory.
[18]:
# Read specific columns
materials_subset = mgdb.read_materials(columns=["material_id", "elements"])
print("\nSubset of materials data:")
print(materials_subset.to_pandas())
2025-01-11 14:17:30 - matgraphdb.materials.core - INFO - Reading materials.
Subset of materials data:
material_id elements
0 mp-1 [Mg, O]
1 mp-2 [Mg, O]
Reading with Filters¶
We can also read materials with filters. This will return a filtered view of the materials node store. This follows the filter syntax of of pyarrow Expressions. More details can be found in the pyarrow documentation.
[12]:
# Read materials with filters
import pyarrow.compute as pc
materials_filtered = mgdb.read_materials(
columns=["material_id", "elements", "band_gap.value"],
filters=[pc.field("band_gap.value") == 1.2],
)
print("\nMaterials with band gap == 1.2:")
print(materials_filtered.to_pandas())
2025-01-11 14:09:53 - matgraphdb.materials.core - INFO - Reading materials.
Materials with band gap > 1.0:
material_id elements band_gap.value
0 mp-2 [Mg, O] 1.2
Filering by ids¶
You can also filter by ids. This will return the materials with the specified ids. This is just adding a filter on the id
column. pc.field("id").isin(ids)
.
[25]:
materials_filtered = mgdb.read_materials(
columns=["material_id", "elements", "id"], ids=[1]
)
print("\nMaterials with ids 1:")
print(materials_filtered.to_pandas())
2025-01-11 14:24:20 - matgraphdb.materials.core - INFO - Reading materials.
Materials with ids 1:
material_id elements id
0 mp-2 [Mg, O] 1
Rebuilding the nested structure of the data¶
You may have noticed when reading the data some fields are given as band_gap.value
instead of just band_gap
. This is because the data is stored in a nested structure. ParquetDB stores the data in a flat structure, so when you read the data, the nested structure is not preserved. You may want to rebuild the nested structure of the data by using the rebuild_nested_structure
method. This has a cost for the intial read, but subsequent reads will be faster.
Note the nested structures are only built the snapshot of the data you read. If you modifiy the data, you will need to rebuild from scratch.
[24]:
# If you rebuild you can pass the parent column name to the `columns` argument.
materials_rebuilt = mgdb.read_materials(
columns=["material_id", "elements", "band_gap"],
rebuild_nested_struct=True,
)
print("\nMaterials:")
print(materials_rebuilt.to_pandas())
# Building from scratch
materials_rebuilt = mgdb.read_materials(
columns=["material_id", "elements", "band_gap"],
rebuild_nested_struct=True,
rebuild_nested_from_scratch=True,
)
print("\nMaterials:")
print(materials_rebuilt.to_pandas())
2025-01-11 14:23:34 - matgraphdb.materials.core - INFO - Reading materials.
Materials:
material_id elements band_gap
0 mp-1 [Mg, O] {'unit': None, 'value': None}
1 mp-2 [Mg, O] {'unit': 'eV', 'value': 1.2}
2025-01-11 14:23:34 - matgraphdb.materials.core - INFO - Reading materials.
Materials:
material_id elements band_gap
0 mp-1 [Mg, O] {'unit': None, 'value': None}
1 mp-2 [Mg, O] {'unit': 'eV', 'value': 1.2}
Loading data in batches¶
You can also load data in batches. This is useful for loading large amounts of data into memory.
[15]:
materials_generator = mgdb.read_materials(
columns=["material_id", "elements", "id"], load_format="batches", batch_size=1
)
print("\nMaterials in batches:")
for i, batch_table in enumerate(materials_generator):
print(f"Batch {i}:")
print(batch_table.to_pandas())
2025-01-11 14:15:23 - matgraphdb.materials.core - INFO - Reading materials.
Materials in batches:
Batch 0:
material_id elements id
0 mp-1 [Mg, O] 0
Batch 1:
material_id elements id
0 mp-2 [Mg, O] 1
Accessing the materials node store¶
In the previous examples, we have used utility method of the MatGraphDB
class to read the materials. However, you can also access the materials node store directly. The MaterialNodes
class extends the NodeStore
which extends the ParquetDB
class, so you can use all the methods available in ParquetDB
and NodeStore
.
[27]:
materials_store = mgdb.node_stores["materials"]
materials_store = mgdb.material_nodes
materials_store = mgdb.get_node_store(node_type="materials")
print(type(materials_store))
# This method is belongs the the MaterialNodes class, which extends the NodeStore class.
materials = materials_store.read_materials()
print(materials.shape)
# This method is belongs the the NodeStore class.
materials = materials_store.read_nodes()
print(materials.shape)
# This method is belongs the the ParquetDB class.
materials = materials_store.read()
print(materials.shape)
<class 'matgraphdb.materials.nodes.materials.MaterialNodes'>
(2, 32)
(2, 32)
(2, 32)
4. Updating Materials¶
We can update the materials in the database by calling the update_materials
method. This method will update the materials with the specified id
.
[35]:
# You can update existing materials in the database:
# Update the band gap of of material with id 0
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
update_data = [
{
"id": 0,
"band_gap": {"value": 3.6, "unit": "eV"},
},
]
mgdb.update_materials(update_data)
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
2025-01-11 14:41:14 - matgraphdb.materials.core - INFO - Reading materials.
Updated material:
id material_id band_gap.value
0 0 mp-1 NaN
1 1 mp-2 1.2
2025-01-11 14:41:14 - matgraphdb.materials.core - INFO - Updating materials.
2025-01-11 14:41:14 - matgraphdb.materials.nodes.materials - INFO - Updating data
2025-01-11 14:41:14 - matgraphdb.core.nodes - INFO - Updating 1 node records
2025-01-11 14:41:14 - matgraphdb.materials.nodes.materials - INFO - Data updated successfully.
2025-01-11 14:41:14 - matgraphdb.materials.core - INFO - Reading materials.
Updated material:
id material_id band_gap.value
0 0 mp-1 3.6
1 1 mp-2 1.2
Updating on a differnt key¶
You can also update on a different key. This is useful if you want to update the materials with the specified material_id
. You can also update on multiple keys.
[36]:
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
update_data = [
{
"material_id": "mp-1",
"band_gap": {"value": 0.1, "unit": "eV"},
},
]
mgdb.update_materials(update_data, update_keys=["material_id"])
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
update_data = [
{
"id": 1,
"material_id": "mp-1",
"band_gap": {"value": 0.1, "unit": "eV"},
},
]
2025-01-11 14:43:00 - matgraphdb.materials.core - INFO - Reading materials.
Updated material:
id material_id band_gap.value
0 0 mp-1 3.6
1 1 mp-2 1.2
2025-01-11 14:43:00 - matgraphdb.materials.core - INFO - Updating materials.
2025-01-11 14:43:00 - matgraphdb.materials.nodes.materials - INFO - Updating data
2025-01-11 14:43:00 - matgraphdb.core.nodes - INFO - Updating 1 node records
2025-01-11 14:43:00 - matgraphdb.materials.nodes.materials - INFO - Data updated successfully.
2025-01-11 14:43:00 - matgraphdb.materials.core - INFO - Reading materials.
Updated material:
id material_id band_gap.value
0 0 mp-1 0.1
1 1 mp-2 1.2
5. Deleting Materials¶
We can delete the materials in the database by calling the delete_materials
method. This method will delete the materials with the specified id
.
[37]:
# Delete the material with id 0
mgdb.delete_materials(ids=[0])
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
2025-01-11 14:47:14 - matgraphdb.materials.core - INFO - Deleting materials.
2025-01-11 14:47:14 - matgraphdb.materials.nodes.materials - INFO - Deleting data [0]
2025-01-11 14:47:15 - matgraphdb.materials.nodes.materials - INFO - Data deleted successfully.
2025-01-11 14:47:15 - matgraphdb.materials.core - INFO - Reading materials.
Updated material:
id material_id band_gap.value
0 1 mp-2 1.2
Deleting columns¶
You can also delete columns from the materials node store. This will delete the columns from the database.
[38]:
# Delete the material with id 0
mgdb.delete_materials(columns=["band_gap.value"])
# Read the updated material
updated_material = mgdb.read_materials(
columns=["id", "material_id", "band_gap.value"],
)
print("Updated material:")
print(updated_material.to_pandas())
2025-01-11 14:48:15 - matgraphdb.materials.core - INFO - Deleting materials.
2025-01-11 14:48:15 - matgraphdb.materials.nodes.materials - INFO - Deleting data None
2025-01-11 14:48:15 - matgraphdb.materials.nodes.materials - INFO - Data deleted successfully.
2025-01-11 14:48:15 - matgraphdb.materials.core - INFO - Reading materials.
Error loading table: No match for FieldRef.Nested(FieldRef.Name(band_gap) FieldRef.Name(value)) in atomic_numbers: list<element: int64>
band_gap.unit: string
cartesian_coords: list<element: list<element: double>>
density: double
density_atomic: double
elements: list<element: string>
formula: string
frac_coords: list<element: list<element: double>>
id: int64
lattice: extension<arrow.fixed_shape_tensor[value_type=double, shape=[3,3]]>
material_id: string
nelements: int64
nsites: int64
source: string
species: list<element: string>
structure.@class: string
structure.@module: string
structure.charge: int64
structure.lattice.a: double
structure.lattice.alpha: double
structure.lattice.b: double
structure.lattice.beta: double
structure.lattice.c: double
structure.lattice.gamma: double
structure.lattice.matrix: extension<arrow.fixed_shape_tensor[value_type=double, shape=[3,3]]>
structure.lattice.pbc: extension<arrow.fixed_shape_tensor[value_type=bool, shape=[3]]>
structure.lattice.volume: double
structure.sites: list<element: struct<abc: list<element: double>, label: string, properties: struct<dummy_field: int16>, species: list<element: struct<element: string, occu: int64>>, xyz: list<element: double>>>
thermal_conductivity.unit: string
thermal_conductivity.value: double
volume: double
__fragment_index: int32
__batch_index: int32
__last_in_fragment: bool
__filename: string. Returning empty table
Updated material:
Empty DataFrame
Columns: [id, material_id]
Index: []
Conclusion¶
This notebook demonstrated the basic usage of MatGraphDB, including creating, reading, updating, and deleting materials. In the next notebook, we will explore a more complex example and see how we can add and query nodes and edges to the database.