ELATE Object Usage ==================== In the previous page there were quick snippits of code to start getting results quickly. Here, we will do a step by step example to explain all the features the ELATE implementation has to offer. The original website for ELATE can be found here, <http://progs.coudert.name/elate>. 1.1 Initialization of the ELATE object -------------------------------------------------------------------------- To start off, we need to import the necessary packages that we will use in the example. We will use the ELATE object class from mechelastic.core, which can be thought of as a container for all the calculations for the ELATE code. We will also use pyvista to demonstrate how one can easily access the 3D meshes directly to customize as they please. Finally, we will use a direct elastic tensor for this example. This elastic tensor was calculated with VASP on bulk silicon and can be found in the examples folder. For direct elastic tensor input, the proper format is a list of lists containing the elastic constants. We also have the density of this structure because this will allow us to display thermal properties. The density must be in units kg/m^3 Importing ELATE object:: >>> from mechelastic.core import ELATE >>> import pyvista as pv >>> elastic_tensor =[ >>> [153.1305, 56.7932 , 56.7932 , 0.0000 , 0.0000 , -0.0000 ], >>> [56.7932 , 153.1305 , 56.7932 , -0.0000 , -0.0000 , -0.0000 ], >>> [56.7932 , 56.7932 , 153.1305 , -0.0000 , 0.0000 , 0.0000 ], >>> [0.0000 , -0.0000 , -0.0000 , 74.7184 , -0.0000 , 0.0000 ], >>> [0.0000 , -0.0000 , 0.0000 , -0.0000 , 74.7184 , 0.0000 ], >>> [-0.0000 , -0.0000 , 0.0000 , 0.0000 , 0.0000 , 74.7184 ], >>> ] >>> density = 2281.05840 # in kg/m^3 We may initialize the ELATE object with the elastic tensor and the density. The density is not required and may be set to None if one does not have density information. Initialization of ELATE object: >>> elate = ELATE(s = elastic_tensor, density = density) .. note:: If one wants to use a DFT code output for this example. They need to use the appropriate parser from ``mechelastic.parsers`` to get the density and the elastic tensor 1.2 Interacting with the ELATE object --------------------------------------------------- From this object we can access the entire ELATE code by calling the class methods and attributes. We will first start by calling the print_properties() method to view a summary of the ELATE analysis to see which quantities we can access. 1.2.1 Print Summary ~~~~~~~~~~~~~~~~ Usage : >>> elate.print_properties() Output :: Average properties Voigt Reuss Hill ------------------------------------------------------- Bulk modulus (GPa) 88.906 88.906 88.906 Shear modulus (GPa) 64.097 61.220 62.659 Young's modulus (GPa) 155.034 149.374 152.216 Poisson's ratio 0.209 0.220 0.215 Pugh's Ratio 1.387 1.452 1.419 Compression Speed (m/s) 8743.125 8646.400 8694.897 Shear Speed (m/s) 5300.929 5180.575 5241.098 Ratio Vc/Vs 2.720 2.786 2.752 Debye Speed (m/s) 4688.006 4598.120 4643.367 ------------------------------------------------------- Eigenvalues of compliance matrix lamda_1 lamda_2 lamda_3 lamda_4 lamda_5 lamda_6 --------------------------------------------------------------- 74.717 74.717 74.717 96.336 96.336 266.718 -------------------------------------------------------------- Variations of the elastic moduli Min Max || Anisotropy ---------------------------------------------------------------------------------------- Young's Modulus (GPa) 122.399 175.100 || 1.431 Min Axis: (0.0, 0.0, 1.0) Max Axis: (0.577, 0.577, -0.577) ---------------------------------------------------------------------------------------- Linear Compression (TPa^-1) 3.749 3.749 || 1.000 Min Axis: (0.958, 0.126, 0.259) Max Axis: (0.5, 0.5, 0.707) ---------------------------------------------------------------------------------------- Bulk Modulus (GPa,Experimental) 38.418 223.191 || 5.810 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.707, -0.001, 0.707) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (0.707, -0.001, -0.707) ---------------------------------------------------------------------------------------- Shear Modulus (GPa) 48.168 74.717 || 1.551 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.0, 0.0, 1.0) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (0.707, -0.001, -0.707) ---------------------------------------------------------------------------------------- Poisson's Ratio 0.058 0.349 || 6.037 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.707, -0.001, 0.707) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (0.0, 1.0, 0.0) ---------------------------------------------------------------------------------------- Pugh's Ratio 1.190 1.846 || 1.551 Min Axis: (0.0, 0.0, 1.0) Max Axis: (0.707, -0.0, 0.707) Second Min Axis: (0.174, 0.985, -0.0) Second Max Axis: (0.174, 0.985, -0.0) ---------------------------------------------------------------------------------------- Compression Speed 8193.358 9091.185 || 1.110 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.0, 0.0, 1.0) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (1.0, 0.0, -0.0) ---------------------------------------------------------------------------------------- Shear Speed 4595.271 5723.234 || 1.245 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.0, 0.0, 1.0) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (1.0, 0.0, -0.0) ---------------------------------------------------------------------------------------- Ratio Compression Shear Speed 2.523 3.179 || 1.260 Min Axis: (0.0, 0.0, 1.0) Max Axis: (0.707, -0.0, 0.707) Second Min Axis: (0.174, 0.985, -0.0) Second Max Axis: (0.707, -0.001, -0.707) ---------------------------------------------------------------------------------------- Debye Speed 4154.917 5000.827 || 1.204 Min Axis: (0.707, -0.0, 0.707) Max Axis: (0.0, 0.0, 1.0) Second Min Axis: (0.707, -0.001, -0.707) Second Max Axis: (0.174, 0.985, -0.0) 1.2.2 Accessing quantities ~~~~~~~~~~~~~~~~ There are two ways to access any given quantity in the print summary, either call the wanted quantity as an attribute or through the to_dict() method. Attribute Usage: >>> voigt_bulk = elate.voigtK >>> reuss_bulk = elate.reussK >>> hill_bulk = elate.hillK >>> anisotropy_poisson = elate.anis_Poisson >>> print(f"Voigt Bulk modulus : {voigt_bulk} GPa") >>> print(f"Reuss Bulk modulus : {reuss_bulk} GPa") >>> print(f"Hill Bulk modulus : {hill_bulk} GPa") >>> print(f"Anisotropy in Poisson's Ratio : {anisotropy_poisson}") Output:: Voigt Bulk modulus : 88.90563333333334 GPa Reuss Bulk modulus : 88.90563333333334 GPa Hill Bulk modulus : 88.90563333333334 GPa Anisotropy in Poisson`s Ratio : 6.037439233255422 Above was just an example of the different attributes available, but to see what other attributes are available use dir(elate) to_dict() Usage: >>> elate_dict = elate.to_dict() >>> for key in elate_dict.keys(): >>> print(key + ':', elate_dict[key]) Output:: bulk_modulus_voigt: 88.90563333333334 bulk_modulus_reuss: 88.90563333333336 bulk_modulus_hill: 88.90563333333336 bulk_max: 223.18983956287462 bulk_min: 38.41779228916066 bulk_min_axis: (0.7070890777249003, -3.2660969780252564e-05, -0.7071244834506942) bulk_max_axis: (-0.7071011747765165, -2.7858572302977706e-05, 0.7071123870033463) bulk_min_axis_2: (-0.7071244601718366, 0.00022805942991048573, -0.7070890649809153) bulk_max_axis_2: (3.792727173859518e-05, -0.9999999992796791, -1.4709880630005777e-06) bulk_anisotropy: 5.809543606331753 youngs_modulus_voigt: 155.03649359718446 youngs_modulus_reuss: 149.37560549227936 youngs_modulus_hill: 152.2184138933355 youngs_max: 175.1019299786047 youngs_min: 122.40059607547886 youngs_min_axis: (0.0, 0.0, 1.0) youngs_max_axis: (-0.577361569343, 0.5773687973343659, 0.5773204397130386) youngs_anisotropy: 1.4305643566525388 linearCompression_max: 3.7492937267942166 linearCompression_min: 3.749293726794212 linearCompression_min_axis: (-0.49500029477676866, 0.8573656603149349, -0.1410632222928697) linearCompression_max_axis: (0.5000000000000001, 0.5000000000000001, 0.7071067811865476) linearCompression_anisotropy: 1.000000000000001 shear_modulus_voigt: 64.09850000000002 shear_modulus_reuss: 61.22084076167894 shear_modulus_hill: 62.65967038083948 shear_max: 74.71840000000003 shear_min: 48.16865095136881 shear_min_axis: (0.7070890649809153, 0.0001381629613373221, -0.7071244834506942) shear_max_axis: (0.0, 0.0, 1.0) shear_min_axis_2: (-0.7071244601718367, -0.00018436062115480075, -0.7070890777249003) shear_max_axis_2: (0.17364817766693041, 0.9848077530122079, -0.0) shear_anisotropy: 1.5511831559375808 poisson_modulus_voigt: 0.20936132356595238 poisson_modulus_reuss: 0.21997348969585478 poisson_modulus_hill: 0.21464422784357595 poisson_max: 0.3494163383468135 poisson_min: 0.057874924259636105 poisson_min_axis: (0.7070890777249003, -3.2660969780252564e-05, -0.7071244834506942) poisson_max_axis: (-0.7070718209701229, 1.3417388323657962e-05, 0.7071417395472906) poisson_min_axis_2: (-0.7071244601718366, 0.00022805942991048573, -0.7070890649809153) poisson_max_axis_2: (-1.3289480480657114e-05, -0.9999999998955298, 5.685947999088838e-06) poisson_anisotropy: 6.03743923325543 pugh_ratio_voigt: 1.387015816802785 pugh_ratio_reuss: 1.4522118975697513 pugh_ratio_hill: 1.4188653210745192 pugh_ratio_max: 1.8457156589893435 pugh_ratio_min: 1.1898760323204636 pugh_ratio_min_axis: (0.0, 0.0, 1.0) pugh_ratio_max_axis: (0.7070890649809153, 0.0001381629613373221, -0.7071244834506942) pugh_ratio_min_axis_2: (0.17364817766693041, 0.9848077530122079, -0.0) pugh_ratio_max_axis_2: (-0.7071244601718367, -0.00018436062115480075, -0.7070890777249003) pugh_ratio_anisotropy: 1.5511831559375808 compressionSpeed_voigt: 8743.152534460714 compressionSpeed_reuss: 8646.424429285951 compressionSpeed_hill: 8694.9229913841 compressionSpeed_max: 9091.221174861093 compressionSpeed_min: 8193.371731108246 compressionSpeed_min_axis: (0.7070810029832681, -0.00026317043674738697, 0.7071325094785961) compressionSpeed_max_axis: (0.0, 0.0, 1.0) compressionSpeed_anisotropy: 1.109582412859889 shearSpeed_voigt: 5300.974695538509 shearSpeed_reuss: 5180.616478819788 shearSpeed_hill: 5241.141088701903 shearSpeed_max: 5723.28772470741 shearSpeed_min: 4595.301802302283 shearSpeed_min_axis: (0.7070890649809153, 0.0001381629613373221, -0.7071244834506942) shearSpeed_max_axis: (0.0, 0.0, 1.0) shearSpeed_anisotropy: 1.245465036015697 ratioCompressionShearSpeed_voigt: 2.720349150136119 ratioCompressionShearSpeed_reuss: 2.785545230903085 ratioCompressionShearSpeed_hill: 2.7521986544078523 ratioCompressionShearSpeed_max: 3.1790489923226763 ratioCompressionShearSpeed_min: 2.523209365653796 ratioCompressionShearSpeed_min_axis: (0.0, 0.0, 1.0) ratioCompressionShearSpeed_max_axis: (0.7070890649809153, 0.0001381629613373221, -0.7071244834506942) ratioCompressionShearSpeed_anisotropy: 1.2599227934059858 debyeSpeed_voigt: 4688.038385364817 debyeSpeed_reuss: 4598.1495576239095 debyeSpeed_hill: 4643.39765995238 debyeSpeed_max: 5000.864516324726 debyeSpeed_min: 4154.939222859331 debyeSpeed_min_axis: (0.7070890649809153, 0.0001381629613373221, -0.7071244834506942) debyeSpeed_max_axis: (0.0, 0.0, 1.0) debyeSpeed_anisotropy: 1.2035951064726405 As you can see, one can easily access whatever quantity they need through this method. 1.2.3 Plotting Methods ~~~~~~~~~~~~~~ In ELATE's website they provide the 2d cross sectional plots and the 3d visualizations of the Young's Modulus, Linear Compression, Shear Modulus, and Poisson's Ratio. This funcationality is still availible in mechelastic, through the plot_2D() and thye plot_3D() methods. The input of this method is the specific elastic property you want to plot and wether you want show the plot. MechElastic now has a 3d slicing widget which can make 2d cross sectional cuts of the 3D surface through the plot_3D_slice(). The available properties to plot : "BULK", POISSON" , "SHEAR", "YOUNG" , "LC" ,"PUGH_RATIO". If the density is provided, then one can also plot : "COMPRESSION_SPEED" , "SHEAR_SPEED" , "RATIO_COMPRESSIONAL_SHEAR" , "DEBYE_SPEED" .. note:: If there are any kinks in the plots, this is due to even or odd number of points used. By using the parameter ``npoints`` one can change the number of points used. plot_2D() Usage: >>> fig = elate.plot_2D(elastic_calc = "POISSON", show = True ) Output: .. image:: images/mechelastic_2d_poisson.PNG plot_3D() Usage >>> meshes = elate.plot_3D(elastic_calc = "POISSON", show = True) Output: .. image:: images/mechelastic_3d_poisson.PNG plot_3D_slice() Usage >>> meshes = elate.plot_3D_slice(elastic_calc = "POISSON", normal = (1,0,0), show = True) Output: .. image:: images/mechelastic_3d_slice_poisson.PNG ~~~~~~~~~~~~~~